Text Retrieval Methods for Item Ranking in Collaborative Filtering
نویسندگان
چکیده
Collaborative Filtering (CF) aims at predicting unknown ratings of a user from other similar users. The uniqueness of the problem has made its formulation distinctive to other information retrieval problems. While the formulation has proved to be effective in rating prediction tasks, it has limited the potential connections between these algorithms and Information Retrieval (IR) models. In this paper we propose a common notational framework for IR and rating-based CF, as well as a technique to provide CF data with a particular structure, in order to be able to use any IR weighting function with it. We argue that the flexibility of our approach may yield to much better performing algorithms. In fact, in this work we have found that IR models perform well in item ranking tasks, along with different normalization strategies.
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملLanguage Models of Collaborative Filtering
Collaborative filtering is a major technique to make personalized recommendations about information items (movies, books, webpages etc) to individual users. In the literature, a common research objective is to predict unknown ratings of items for a user, on the condition that the user has explicitly rated a certain amount of items. Nevertheless, in many practical situations, we may only have im...
متن کاملA User-Item Relevance Model for Log-Based Collaborative Filtering
Implicit acquisition of user preferences makes log-based collaborative filtering favorable in practice to accomplish recommendations. In this paper, we follow a formal approach in text retrieval to re-formulate the problem. Based on the classic probability ranking principle, we propose a probabilistic user-item relevance model. Under this formal model, we show that user-based and item-based app...
متن کاملA Theory of Information Matching ( TIM ) ∗
In this work, we propose a theory for information matching. It is motivated by the observation that retrieval is about the relevance matching between two sets of properties (features), namely, the information need representation and information item representation. However, many probabilistic retrieval models rely on fixing one representation and optimizing the other (e.g. fixing the single inf...
متن کاملA Theory of Information Matching
In this work, we propose a theory for information matching. It is motivated by the observation that retrieval is about the relevance matching between two sets of properties (features), namely, the information need representation and information item representation. However, many probabilistic retrieval models rely on fixing one representation and optimizing the other (e.g. fixing the single inf...
متن کامل